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Abstract Meiri, & Pearl 1991), constant instantaneous resource im-

pacts (either production or consumption) for each timepoint,

We present some advances in the area of Linear Resource
Temporal Networks (LRTNSs), which consist of activities that
consume or produce a resource linearly over the course of
their duration, subject to absolute and relative metric tempo-
ral constraints.

Previous work on LRTNs has shown how to construct tight
bounds for resource availability as a function of time. The
previous algorithm is pseudo-polynomial; in particular, the
complexity has two components involvirig whereh is the
length of the scheduling horizon. Howevérmay be expo-
nential in number of activities, making this of limited use for
practical problems.

In this paper we build upon the previous results to prove a
Persistence Theorem showing that the set of activity pieces
that maximizes the availbility increases monotonically over
time. This provides a polynomial bound on the number of
slope changes and leads to an algorithm that eliminates one

and piecewise constant resource bounds. Instantaneous im-
pacts are useful for modelling reusable resources that are al-
located at the beginning of an activity and released at the
end, such as power usage on a planetary rover. In this
context, techniques have been developed to bound the re-
source availability for RTNs in polynomial time. These
bounds can be used to provide early termination of search
branches in the process of generating temporally flexible
schedules while maintaining soundness and completeness.
Both (Muscettola 2002) and (Frank 2004) provide bounds
that are tight, in the sense that they justify the resource
bound by proving the existence of a feasible schedule; tight
bounds enhance the ability to support early termination.

More recent work (Frank & Morris 2007) has applied this
approach to activities with resource impacts that are linear
in the duration of the activity. This work shows that certain

of the h factors in the complexity of the previous algorithm. types of discretizations of the activities can provid@ctre-

source bounds when the constraints are integer-valued. The
main drawback of this work so far is that the discretization
greatly increases both the set of times where the resource
availability must be recomputed and the number of activi-

Introduction

Developing acceptable schedules for tasks that must satisfy

temporal and resource constraints is a central problem of Al ¢ . . . .

with numerous practical applications. Building schedules by ties that must be con§|dered in the calculatlon. In this paper,

ordering events rather than assigning event times preservesWe reduqe the set of times that must be considered to a poly-
nomial size, and describe methods to control the number of

temporal flexibility; this permits the construction of a family ; A X
of schedules without determining exactly when events take discrete activities needed to calculate tight bounds.

place while still guaranteeing that feasible solutions exist. . s

Preserving flexibility has two potential advantages over find- . Notation and Def'n't'ons ]

ing a “ground” schedule. The first advantage is protection Ve will assume LRTNs have a single resource. We will also

from uncertainty that can lead to costly rescheduling dur- @ssume a constant resource upper bofing and a lower

ing schedule execution. The creation of temporally flexible bound of0, and that the resource initially hds,, available

plans to protect against some execution time uncertainty was capacity. This easily generalizes to varying initial capacity,

described in (Morris, Muscettola, & Tsamardinos 1998) and Piecewise constant upper bounds, and (with some additional

was successfully used in controlling a spacecrafhg¢on ~ WOrk) to piecewise linear upper and lower bounds.

et al. 2000). The second advantage is in speeding up the ~Let A be the set of all activities of an LRTN and =

search for a feasible schedule by seeking to avoid premature|A|- Let A € A be an activity. LetA, be the start event

commitments. This approach to scheduling was studied in of activity 4, and letA. be the end event off. If G'is

(Cheng & Smith 1995), (Laborie 2003a) and (Policelial. a ground schedule4$ denotes the value of, in G, and

2004). similarly for AS. Activity durations and resource rates are
Laborie (Laborie 2003b) describes a simple but expres- denoted byA; and A;, respectively. IfA, < 0, thenA is

sive formalism for scheduling problems call&®ksource  Said to be aonsumerif A, > 0, thenA is aproducer

Temporal Network§RTNs). Briefly, RTNs consist of a Each activityA has associated with it a constraint:

Simple Temporal Networ{STN) as described in (Dechter, As+Ag = A,



Let £ be the set of timepoints (start or end times of activi-
ties) and suppos€;, E> € £. There may be mangimple
temporal constraintsf the form

21 < B — FEy <9

We let the “dummy” activityH indicate the scheduling hori-
zon, thusH, = 0, H, = h and (obviously)H; = h.
Absolute constraints on events are then translated into sim-
ple temporal constraints between events did or H..
(For example, the constraiM, € [z1,x2] translates to
1 < Ay — Hy; < x5.) Recall that an STN can be trans-
formed into adistance graph(essentially rewriting each
lower-bound constraint; < F; — F, as an upper-bound
constraintEy — E; < —z1, so that all the constraints are
upper bound constraints). For a consistent STN, we denote
the shortest path distance from a timepalit to a time-
point E5 in the distance graph b¥( £, E»). This provides
an upper-bound on the temporal distance fréinto Fs;
thus,ES — E¢ < d(E,, E») in every grounded schedule
Note thatd(H,, E') and—d(E, H,) provide absolute upper
and lower bounds oi’; we denote these b¥,;, and Eyy,
respectively. An STN may be regarded as a concise repre-
sentation of a flexible schedule.

Given a ground schedulg, we denote bydvails(t) the
available resource atin G:

>

Availg(t) = Y AAg+
AcA|AG<t A€ AJAG <t<AG

(t—A9)A,

We denote byL,,..(t) the maximum availableesource
at a timet over all schedules, and Wy,,;,(¢) the minimum
available resource at Thus,L,,q.(t) = maxg Availg(t)
and similarly for L,,;,(¢). We sayG justifies Ly,q. () if
Linaz(t) = Availg(t). We denotanaxy L. (t) by L}

andmin Ly (t) by Ly, ., (similarly for L. andL,

mz’n)'

Note thatL,,..(t) and L,,;, are functions that tightly
bound the availability of the schedules; we call these the
upper and lower envelopes, respectively, following (Muscet-
tola 2002).

The theory of maximum flows is used to calculate the re-
source bounds. It is described in standard textbooks, for ex-
ample (Ahuja, Magnanti, & Orlin 1993). Lef be a flow
graph andlowa flow; we will denote pipes of the flow graph
by p. As in (Muscettola 2002), we will denote thmesidual
capacityof a flow over a subset of the flow graghi C F
bY 7 f10w (G). That is,7 10, (G) denotes the cumulative re-
maining capacity of pipeg € G reachable from the source
for the maximum flow.

We introduce the following definitions:

Definition 1 Given an LRTN, we define thestants/ as
Ugee ({E} U{Euw}).

Definition 2 Given an LRTN, at time¢ an eventE € £ is
pendingat t if By, < t < E, openattift < Ej and
closedat ¢ if E,, < t. An activity A is closedif A, is
closed,openif A, is opencompletely pending A, and A,
are pending, angartially pendingotherwise

INote an event may be both pending and open/closed, but an
activity with duration> 0 is in only one state.

Definition 3 Given an LRTN and a pair of activitie$ and
B, A anti-precede$ if d(A., B,) < 0.2

Definition 4 Given an LRTN, a set of activiti€sis a pre-
decessor sdf, when activityS € S, then every activityl’
that S anti-precedes is also i§.

Definition 5 Given an LRTN and a ground scheddleG is
splitatt if there is some activityl such thatA¥ < ¢ < A¢.
A schedule that is not split atis intactat ¢.

Overview

For LRTNs with integer constraints, it has been shown
that L,,q.(t) and L,,;,(t) can be found inO(h(nh)%)
time (Frank & Morris 2007). The results are limited to
the case where the activity durations and resource consump-
tion rates are constant and provided as inputs to problem
instances. We preserve this restriction; to emphasize this,
we henceforth denote the durations and rates pgnda,.,
respectively, for an activityl. Also, in this paper we con-
sider only L,,,...(t); by symmetry, the results fak,,;, are
similar.

In order to findL,,..(t), (Muscettola 2002) shows that
it is sufficient to findL,,...(¢) at the instantd, since the
envelope is constant between instants. The maximum flow
problem can be solved using many well-known polynomial
time algorithms; for RTNs witlw events, thus, the complex-
ity of finding L,,4. () andL,,;,(t) is polynomial. Suppose
we are given an RTN witle(X') denoting the resource im-
pact of eventX. To find the value of the schedule justifying
Lynaz(t), @ maximum flow problem is constructed using all
anti-precedence links derived from the arc-consistent STN.
The rules for building the flow problem to finb,, ... (t) are
as follows: all pending events are represented by nodes of
the flow problem. Ifd(X,Y) < 0 then the flow prob-
lem contains an arcX — Y with infinite capacity. If
¢(X) > 0 then the problem contains an arc— X with
capacityc(X). If ¢(X) < 0 then the problem contains an
arc X — 7 with capacity|c(X)|. (The flow problem for
L., (t) is constructed similarly, except #{X) > 0 then
the problem contains an at€ — 7 with capacityc(X),
and if¢(X) < 0 then the problem contains an arc— X
with capacity|c(X)|.) The maximum flow of this flow net-
work matches all possible production with all possible con-
sumption in a manner consistent with the precedence con-
straints. An RTN and associated flow problems for find-
iNg L. (t) and L,,;,(t) are shown in Figure 1. The set
of events reachable in the residual flow network is a prede-
cessor set (since the infinite pipes resulting from the anti-
precedes relation always have residual capacity), and is de-
notedP,qx(t). Lmas(t) IS justified by scheduling all pend-
ing events inP,, ... (t) beforet, and all other pending events
aftert. The tightness of the bound is guaranteed by proving
that adding the constraints that force these activities to occur
before or aftet is consistent with the original STN.

The approach in (Frank & Morris 2007) for findidg, ..,
involves chopping all activities into unit-sized pieces, and

2Implies B. — A. < 0, i.e., every part of3 non-strictly pre-
cedes some part of, in every schedule.



above, this is more accurately estimated as the number of
chopped activities. We present a generalization of the re-
sults in (Frank & Morris 2007) that requires chopping only

until certain “drag alignment” conditions are achieved. A
§7 1,1 0,% &? 1,1]
_ *[ ] . ﬁ “worst case” example shows that may still result in chop-
<[1,10)-1> <2,11]+1>  <[2,11]-1> <[3,12],+1> ping to units, but that is an improvement over the previous
method, which required chopping to units in all cases.
NVABIEAN R VRIEAN '

<[1,10],-1> <[2,11],+1>  <[2,11],-1><[3,12],+1> Persistence Theorem

(b) Flow to f|ndL (c) Flow to find Lmax If we could bound the number of places in the envelope
where slope changes can occur, tlep,.(t) can be found

by calculating the slope only where it changes. The compu-
1& mW \OW tational complexity of finding_,,....(¢) will drop as long as
@ the number of places the slope can change is smaller than

(a) Resource Temporal Network

mln( )

h and those places can be found efficiently. Recall that for
RTNs, changes of,,..(t) can only occur at thé(n) in-
stants, and the instants are found in linear time. For LRTNs,
however, previous work has shown that local minima can oc-
cur at times that are non-instant and even non-integer. Local
maximacan only occur at integer times, but the following

Figure 1: An RTN, the flow problem to find,,;,,(9), and example shows that the times at which these changes occur
the flow problem to find.;;,q. (10). may not be instants either.

solving the maximum flow problem described in (Musce*

tola 2002) at integer times. Then findig,,,, involves [0,0] ’ ay=3;2,=-1 ‘
a further chop of units into two pieces of size¢| and

1—[t] and solving a time-varying linear programming prob A by=3;b, =2 ‘
lem based on the maximum flow formulation, for betweer [-0, 1]

integer times. Cq=3;¢,=-3 ‘

The complexity of this approach scales according to ti
number of maximum flow/linear programming problem
that need to be solved, and according to the size of each s
problem. In the previous approach, separate maxflow/I 1 Lmax
problems need to be solved at each integer timepoint, so
number of such is bounded I6y(%). The size of each prob-

lem depends on the number of chopped activities, which 0

bounded byO(nh), but may be considerably less if the ac Schedule Slding B to delay G
tivities have short durations relative to the horizon. If th B early.C Late

maximum duration of all activities is D, then the number ¢ -1

chopped activities is at mosatD.

The size of the horizon is typically very large in real prob-
lems. For example, it may be as large as the number of sec-
onds in a week (604800), which limits the usefulness of the Figyre 2: An LRTN for whichL,...(t) has a slope change

current approach. _ . _ at a time that is not an instant.
Although chopping to units does not lead immediately to

a practical algorithm, it provides a useful theoretical charac-  The example in Figure 2 consists ®fctivities A, B, C
terization of the schedules that determine the envelope. In with rates indicated and duratioss The following con-
this paper, we exploit that to prove a result (called the “Per- straints hold:
sistence Theorem”) showing that once an activity piece be-
comes part of the s)et deter%ining the maximum );\?ailability A4 =0, B, 20, €20, Cs—B.<1
value at some time, it never leaves it for larger values of ~ There are no absolute upper bounds, so 0 and 3 are the only
t. This allows us to bound the number of slope changes and instants. Let availability be 0 initially and consider< 1.
leads to a new algorithm without the need to solve a sepa- The best schedule for all these times is whBge= 0 and
rate problem at each integer time. This eliminates thefiirst C, = 1. Thus L,,..(t) rises linearly between = 0 and
factor. t=1.

We also make progress on the othdactor, which arises Now consider > 1. In this case, the best schedule is to
from the need to chop each original activity into as many as let B and C slide to the right. (Otherwise C would kick in.)
h pieces, but do not eliminate it completely. As mentioned Thus, the availability decreases to @t at 2.



We see that thé,,,...(t) has a peak at= 1, which is not
an instant, and it slopes down to 0 on both sitles
In spite of this, we can nevertheless bound the number of

Similarly, producer source pipes can be retained in the
network even after they become closed, since the only con-
sumer events that can drain them will have had their sink

slope changes, and thus the number of points where we needpipes removed. (However, the contribution of these produc-

to solve for the envelope. The key idea is to analyze how the
set of activities that determines the maximum availability
evolves with time.

The availability of a resource at a timés determined by
the set of activities or activity portions (if the activity over-
lapst) that occur prior ta. We show this set grows mono-
tonically with ¢, i.e., once an activity or activity portion en-
ters this set, it never leaves it. This result also applies in the
context of events with instantaneous resource impact. Al-
though not specifically called out in (Muscettola 2004), the
result is implicit in the argument (middle left column page
6) that “F'(P,,4.,,—1) can be ignored during the computa-
tion ...” (of F(P,,.,:) and subsequently). We isolate the
result and give a more intuitive proof here.

The set of activities/events that occur prior to timde-
termines the availability at tim& The maximum flow ap-
proach identifies a unique sét, .. (t) that maximizes the
incremental availability at time, and is minimal in terms
of the number of activities/events among such sets. If we
add to this the closed set at timgwhich also contributes
to the availability att), we see that there is a unique set
Qmaz(t) that can occur prior te that maximizes the avail-
ability at timet¢, and is minimal in terms of the number of
activities/events.

Theorem 1 (Persistence Theorem)The setQ,q.(t) in-
creases monotonically with

Proof: We show that the maxflow network can be reformu-
lated in a way that makes the result immediate.

First note that the network can be modified so that all
intermediate (not source or sink) pipes go directly from

producers to consumers. That is, we can delete the pro-

ers to the availability will now appear in the network contri-
bution rather than the closed set contribution.)

With this reformulation, the incremental changes to the
network as time advances consist of (1) adding source - pro-
ducer pipes (as they enter the pending set) and (2) deleting
consumer - sink pipes (as they exit the pending set). In-
tuitively, adding producers and deleting consumers means
that the competition for consumers to drain the flow from
the producers can only get worse over time, so if a source
pipe to a producer becomes unsaturated in a maximum flow
at some time, it will stay unsaturated at subsequent times.
More formally, adding a source pipe or deleting a sink pipe
cannot create a new augmenting path for an unsaturated pro-
ducer node. This means the producer will continue to be in
Qm,ax (t)

ad

In the context of LRTNSs, thé&,,,...(t) problem can be for-
mulated as a maximum flow network in terms of the chopped
activities (Frank & Morris 2007), which allows us to apply
the Persistence Theorem. Note that an original (unchopped)
activity contributes at least partially to the availability if its
earliest chopped part contributes to the availability, and it
contributes totally if its latest chopped part contributes to
the availability. Thus, the Persistence Theorem can be ap-
plied to the original activities also. Suppose welgt, . (t)
denote the set of (original) activities that contribute totally to
the maximum availability and lef,,, . (t) denote the set of
activities that contribute at least partially but not totally. We
will also let U, (t) be the set of activities that do not con-
tribute, i.e., the activities that are neitherS, . (¢) nor in
Tnaz(t). Note that activities can move only frobd,, . (¢)
t0 Siax(t), Smaz(t) 10 Thax(t), OF Upas(t) 10 T ().

ducer/producer and consumer/consumer pipes. Since the an-Then the Persistence Theorem allows us to conclude that
tiprecedes relation is transitive, and intermediate pipes have each ofS,,..(t) and T,,.,(t) changes its composition at

infinite capacity, this does not alter the feasible flows in the
source and sink pipes, and so does not chang®the (¢)
solutions.

Second it does no harm to include nodes and intermediate Availg(t) =

pipes forall the events in the network (even if they are not
in the pending set). We need only omit the source/sink pipes

mostO(n) times ag increases.
Now recall the equation

>

A€ A|AG<t

(t— A%a,.

D

AEA|AG<t<AG

araq +

for the open and closed events; since there will then be no If we know the setsS,,,,.(t) andT,,..(t) that contribute to

flow through the nodes, they cannot affect the rest of the
network so the maximum flow solution is unchanged.
Next we can see that in fact the sink pipes for the con-

the maximum availability at, we can use this equation to
formulate a linear program to determine a schedulthat
maximizes the availability at time Thus, for fixedl},, . (t)

sumer events that are open can be included in the network andsSy, .. (t) and fixedt, we wish to maximize

without affecting the maximum flow solution. The reason
for this is that any flow to these consumers can only come

from producers that anti-precede them. These producers will

also still be in the open set and so will have zero flow. Thus,
the flow to the open consumers will be zero even if their sink
pipes are included in the network.

3The consumer! constrained to start at 0 makes= 1 a local
maximum of L.qz(t); eliminating A leads to a slope change at
t = 1 but L. (t) remains at

>

A€T max(t)

araq + Z

AESmax(t)

(t— As)ar

over the variablesi, and A, for every A € A, subject to
the STN constraints and the additional constraiiis< ¢
foreachA € Tpa.(t), As <t < A. foreachA € S,,4.(t),
andt < A, for eachA € U,,44(1).

We would like to avoid having to solve this LP in-
dividually for every value oft for which a particular



Smaz (O Tmaz (t) pair is valid. (We will call this arS/T re-
gion.) Notice that the objective and the constraints of this
LP are linear int. Thus, the feasible region withadded
to the set of variables is still a convex polytope. It follows
that the maximum objective solution asncreases will be
piecewise-linear and convexin

Itis well known that the set of all solutions to an LP corre-

At the transition from one S/T region to another, it is pos-
sible to have sudden (discontinuous) changes in the earliest-
time solution. However, by the Persistence Theorem activi-
ties can only jump backward (to earlier times); there can be
no sudden jumps forward. Thus, the “can’t catch up” argu-
ment in the last paragraph applies across the whole horizon,
and a slope change caused by a particular constraint can be

sponds to the feasible region when some of the inequalities hit only once for all the regions.
are changed to equalities, and the ones that are changed can The number of STN and < A. constraints iSO (n?),

be identified by solving the dual problem. Note that chang-
ing inequalities to equalities in the above problem amounts
to tightening the STN constraints. Thus, the set of all so-

so there can be at moét(n?) slope changes (i.e. pieces)
resulting from reaching constraint bounds. (Generalizing
Figure 2 by adding independent pairs of producers and con-

lutions can be represented as a tighter STN. Recall that any sumers likeB andC with maximum separation constraints

STN has a unique earliest-time solution. We will refer to this
as the earliest-time solution of the above LP. This “canoni-
cal” solution provides a useful theoretical tool for deriving
results about the maximum availability curve.

The succession of earliest-time maximum-availability so-
lutions for¢, ast advances, may be visualized as a kind of
“movie.” Of particular interest are the “trajectories” of in-
dividual activities with respect to, which we can analyze
in part by determining the inequalities that become equal-
ities. Note these cannot includé, = tort = A, for
any A € Sp..(t); otherwise A would necessarily be in
Tinaz(t) OF Unaz(t). However, they may includel, = ¢
for some of thed € T,,..(t) andt = A, for some of the
A € Upnaz(t). Apart from the LP-derived equalities, an
activity A in U,,q.(t) will also be forced to move by the
t < A, inequality once reaches the absolute lower-bound
of A. Thesemovingactivities may in turn push or pull other
activities via the STN constraints. Otherwise activities re-
main stationary in the earliest-time solution. Thus, activities
can either move along with(maintaining a constant sepa-
ration fromt), or stay fixed in absolute time such thatan
pass them by.

Suppose, is the initial time of the S/T region. Using this
approach, we can solve the dual LP fgrandty + € for
some smalt, identify the moving activities, and project for-
ward the earliest-time solution. Because of the linearity and
convexity overt, the projected values of the variables will
provide a solution until we hit a “boundary” where one of
the STN ort < A, bounds is reached and would be violated
if we projected further. (This includes the case where we be-
gin to push am in U,,.. (t) by virtue of reaching its lower-
bound.) At that point we can re-solve and project again and
thus trace out the whole piecewise-linear maximum avail-
ability curve for the S/T region where thi,, ... (¢)/Trnaz (t)
pair is valid. We remark that whether an activity is moving
or stationary can vary from projection to projection within
the S/T region.

Note that at = A, equality for A € U,,q.(t) cannot

can lead to linear slope changes between instants, but we
do not yet have a good example of quadratic slope changes
arising due to constraint bounds.) There can be an addi-
tional O(n) changes resulting from transitions between re-
gions. Thus, computing the maximum availability curve for
the entire horizon involves solving(n?) + O(n) = O(n?)
LP problems. Unlike previous work, we do not need to for-
mulate the LP using the maximum flow problem; it requires
only O(n) LP variables (we must choose the start times for
activities inS,,,..) and at mosO(n?) constraints.

However, the above analysis assumes we know where the
different regions start and end. We still need to determine
the specific times where thg,,,.. (¢t)/T.. (t) pair changes.

Determining the S/T Regions

We now consider how to determine the specific times where
Smaz (O)ITmae(t) pair changes, or equivalently to determine
when an individual activity enters th#,,...(¢) andT},,q.(t)
sets. One way of doing this is to chop the activities to unit
pieces and solve the maximum flow network at integer times
as in the previous work. This will tell us when the different
units come intaQ,4.(t). However, this would not reduce
the complexity.

If we focus on determining when a specific unit piece en-
tersQmaqz(t), we can do better. We can do a binary search
over the horizon looking for the integer time when the piece
first comes in. The search itself requires solvitiog i)
flow problems, which is linear in the compact representation
of the problem. After solving each flow problem at time
we ask whether the first (temporally ordered) unit sized com-
ponent of any activityl is now inQ,,....(t), when it was not
iN Qmax(s). If so, we conduct a classical binary search to
determine whemd entered@ ... (It requireslog, h bits
to specify the value okh.) However, we still need to solve
maximum flow problems at each of thes h steps.

The overall complexity of this approach is as follows:
O(n®) (O(n?) linear programming problems, of complexity

cease to be true after a re-projection since activities can only O(n?) each at worst (using Karamakar’s algorithm, e.g.) for

keep up or fall back relative t6, and falling back would
imply A is no longer iny,,...(t). Also, ifanA. = ¢ equality

each ofO(n) S/T partitions, plug)(log(h)nSh®) (O(log h)
flow problems ofD(n°h®) worst case (using Edmunds Karp,

ceases to be true after a re-projection, it can never be true €.g.) for each of. activities.

again becausel. can never “catch up” te. Furthermore,
the absolute lower-bound of an activity {A,,..(t) can be
reached only once. Thus, a particular “boundary” constraint
can be hit only once for this S/T region.

The average case complexity is significantly smaller than
this. Simplex often has performance®@fnr) on average, re-
ducing the first factor t®(n?); flow problem solvers are of-
ten closer t@)(n?) on sparse problems, it is likely that fewer



thanlog h flow problems must be solved, and itis likely that  particular interest are the cases where the consumer Starts-
there are fewer than? slope changes i, (t). Within the producer, and where the producer Ends-Within
Notice the difference between this approach and the pre- the consumer. If the former case, we say there is a leading
vious approach; we no longer have different computational producer; inthe latter case, there is a trailing consumer. Intu-
problems to identify.;t, . andL,, ., but we find the whole itively, a leading producer “sticks out in front” and a trailing
envelope by calculatind.,,...(t) at each time when the  consumer sticks out behind.
slope is known to change. We do not need the chopped net- More formally, we say a temporal constraint in which a
work to calculatel,,, ... (¢) itself. We still need to search for producerA drags a consumeB has aleading produceliif
times whenQ,,..(t) changes, and this part of the search 0 < d(As, B,) < aq. Similarly, it has drailing consumeif
does require solving the flow problem on the chopped net- 0 < d(A., B.) < bq. This leads to the following result.

work. As a result, we have dramatically reduced the impact tpaorem 2 Suppose the drag relationships are such that

of /- on the complexity, but not completely eliminated it. there are no leading producers or trailing consumers. Then
_ Qmaz(t) contains only complete activities (i.65,,4.(t) is
Reduced Chopping empty).

The D discussed above arises from the need to chop activ- Proof: We need only show that any producergip, ... (t)

ities to unit size in order to take advantage of the results are complete. Since there are no trailing consumers, com-
in (Frank & Morris 2007). Thus, the key to further improve-  plete producers can only drag (i.e., force i@, ... (t)) com-
ments is reduce the amount of chopping needed to apply the plete consumers.

maximum flow method. Let P be the set of incomplete producers @, (t)-

One simple possibility is a transformation of units. If Suppose contrary to the theorem tffais non-empty. Let
the greatest common devisor (gcd) of the integer constraint C be the set of incomplete consumers@, .. (t). Since
bounds is larger than 1, then we can divide all of the complete producers can only drag complete consumers, the
constraint bounds (including durations) by the gcd without incomplete consumers i can only be dragged by incom-
changing the essential problem. This reduces the required plete producers if®. Note that each producet in P must
amount of chopping. For example, in a practical application, drag at least one incomplete consumer; otherwise the avail-
constraints might have a granularity of 15 minutes while ac- ability could be increased simply by moving completely
tivities range in duration up to 2 hours in multiples of 15  INt0 Qax(t).

minutes. In this case, the gcd is 15, and/%e- 8. Now let
A more sophisticated approach is to reformulate the max- r= Z ar + Z br
imum flow approach in a way that requires less chopping. AeP BecC

This takes advantage of the fact that the network can be j.e., » is the net rate of production by the activities in
modified so that all intermediate (not source or sink) pipes P and C. Note that if r is negative, the optimality of
go directly from producers to consumers. (As discussed in Q,,,.(t) is contradicted since the availability could be in-
the proof of the Persistence Theorem, this does not alter the creased by moving a portion of the incomplete activities out
feasible flows in the source and sink pipes, and so does not of (,,, ., (t). On the other hand, if is positive, the availabil-
change the?,,..(t) solutions.) This suggests that we focus ity could be increased by moving an additional portion into
on the anti-precedes relationship specifically between pro- (... (¢). Finally, if  is zero, the minimality 0f),q.(t) is
ducers and consumers. Intuitively, we want to bring as much viplated. Thus? must be empty and the result follows3
production as we can into th@,,..(t) set, but that pro- The significance of Theorem 2 is that it allows us to chop
duction is countered by the cost of the consumption that is only to the point where there are no leading producers or
dragged in also by the producer/consumer constraints. The trailing consumers. Recall that is a leading producer
cost of a particular consumption may be shared by several with respect to a consumé? when0 < d(A,, B,) < aq.
producers, and we seek a balance that maximizes the avail-\We can eliminate this occurrence by choppit@t a point
ability att. d(A,, B,) after A,. Similarly, a trailing consumer occur-
The maximum flow method is designed to find the op- rence wheré < d(A., B.) < by can be removed by chop-
timum balance by seeking the best match of consumption ping B at a pointd(A., B.) before B.. However, it is easy
to production. However, the matching in our case is com- to see that each chopping of a leading producer may create
plicated by the partial dragging that can result from the new trailing consumers and vice versa, so the chopping pro-
temporal constraints, so only portions of the consumers get cess must be iterated. With integer constraints, the activities
matched to portions of the producers. Chopping to units en- cannot be chopped to smaller than unit pieces, so the itera-
sures there is no partial dragging. However, it turns out a tion must terminate.
weaker condition can achieve the same effect. We now present an example showing that the chopping
First we define some new concepts. Intuitively, the drag may still proceed to units in the worst case, so, unfortunately,
relationship between a producer and a consumer is the tem- this does not eliminate the exponential factor in general.
poral relationship that results when the producer is pulled @ PRODUCERSA, A4, ..., A,
to the left (i.e., earlier), and the consumer is pulled to the CONSUMERSB,, By, ..., B,
right, until the constraint between them becomes active. We  DURATIONS (all same)D = 2.
can then consider the Allen relationships in this context. Of  DRAG CONSTRAINTS



d(Aos,Bis) =0fori=1,..,n
d(A; s, Bys) =0fori=1,..,n
d(Ai,57Bi,s) = 1)/2Z fori = 17 N

We show that the activities get chopped igitopieces by
induction onn. The result is easily seen far= 1. Assume
it is true forn. Consider then + 1 case. By the induc-
tive hypothesis, bothly and B, are chopped int@™ pieces
by thei = 1,...,n subset of the constraints. These chops
are propagated, respectively, 8,1 and A, ;. Then the
drag relationship betweed,,,; and B, 1, which is off-
set byD /271, subdivides each of the chops in both
and B, into two further pieces, i.e., they are chopped into
27+1 pieces in all. These additional chops then get propa-
gated back tod, and By and from them to all thed; and
B;. The result follows.

Figure 3: An LRTN exhibiting exponential chopping to en-
force completeness ©§,,q. (t).

Related Work

Problems involving activities with linear resource impact

have been considered in two other papers (Beldiceanu &
Poder 2007) (Kumar 2005), besides the (Frank & Morris

2007) paper cited earlier.

In (Beldiceanu & Poder 2007), the authors consider tasks
consisting of sequences of subtasks where each of the sub-
tasks has linear resource impact. The complexity of comput-
ing the envelope for a single resourc&ligp log p) wherep
is the number of subtasks. However, the task model does not
allow any additional constraints between the subtasks (such
as the STN constraints considered here) and thus avoids the
delicate balancing issues.

In (Kumar 2005), the author considers a model that in-
cludes what are calle@lype 3actions that could have linear
(or more general) resource impact. However, the paper re-
stricts Type 3 actions to beonsumeronly. This simplifi-
cation also avoids the difficult balancing issues that arise for
LRTNs when producer/consumer interactions are included
in the picture.

Conclusions and Future Work

While not completely eliminating the pseudo-polynomial
aspect of the envelope problem for LRTNs, we have re-
moved one of thé factors and reduced the other to a point
where it may be useful in practical problems. We have also
answered some outstanding questions about the nature of
the envelope; in particular, we have shown that even though
slope changes can occur at non-instants, the number of such
changes is nevertheless limited to a polynomiat.in

Since we have not found an example of quadratic slope
changes between S/T boundaries, it is possible that the
bound on the number of such slope changes might be loose.
For example, Figure 2 is not impacted if multiple consumers
are constrained to the producer in the same manner; the pro-
ducer "pushes” all of the consumers ahead of it to maintain
the envelope aftet = 1. A proof of a tighter bound will
shave another factor afoff of the complexity. Some practi-
cal improvements may also be possible. For example, rather
than searching the entire horizénto find the S/T bound-
ary for an activity, we need only search where the activity
is pending. We could also exploit precedences that restrict
the order in which activities can enter the S/T sets. More
promising yet is the prospect of a complete formulation of
the problem of findingL,,...(t) as a linear program, either
directly or based on a compact encoding of the maximum
flow or minimum cut representation. While such a formula-
tion may avoid all factors of in the complexity, to date all
such formulations we have found are nonlinear programs.
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